Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Hepatol Commun ; 8(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38619452

RESUMEN

HSCs, the resident pericytes of the liver, have consistently been at the forefront of liver research due to their crucial roles in various hepatic pathological processes. Prior literature often depicted HSCs in a binary framework, categorizing them as either quiescent or activated. However, recent advances in HSC research, particularly the advent of single-cell RNA-sequencing, have revolutionized our understanding of these cells. This sophisticated technique offers an unparalleled, high-resolution insight into HSC populations, uncovering a spectrum of diversity and functional heterogeneity across various physiological states of the liver, ranging from liver development to the liver aging process. The single-cell RNA-sequencing revelations have also highlighted the intrinsic plasticity of HSCs and underscored their complex roles in a myriad of pathophysiological processes, including liver injury, repair, and carcinogenesis. This review aims to integrate and clarify these recent discoveries, focusing on how the inherent plasticity of HSCs is central to their dynamic roles both in maintaining liver homeostasis and orchestrating responses to liver injury. Future research will clarify whether findings from rodent models can be translated to human livers and guide how these insights are harnessed to develop targeted therapeutic interventions.


Asunto(s)
Células Estrelladas Hepáticas , Hígado , Humanos , Carcinogénesis , Homeostasis , ARN
2.
Semin Liver Dis ; 43(4): 418-428, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37802119

RESUMEN

The purpose of this review is to summarize current knowledge about the role of the Hedgehog signaling pathway in liver homeostasis and disease. Hedgehog is a morphogenic signaling pathway that is active in development. In most healthy tissues, pathway activity is restricted to stem and/or stromal cell compartments, where it enables stem cell self-renewal and tissue homeostasis. Aberrant over-activation of Hedgehog signaling occurs in many cancers, including hepatocellular and cholangio-carcinoma. The pathway is also activated transiently in stromal cells of injured tissues and orchestrates normal wound healing responses, including inflammation, vascular remodeling, and fibrogenesis. In liver, sustained Hedgehog signaling in stromal cells plays a major role in the pathogenesis of cirrhosis. Hedgehog signaling was thought to be silenced in healthy hepatocytes. However, recent studies show that targeted disruption of the pathway in hepatocytes dysregulates lipid, cholesterol, and bile acid metabolism, and promotes hepatic lipotoxicity, insulin resistance, and senescence. Hepatocytes that lack Hedgehog activity also produce a secretome that activates Hedgehog signaling in cholangiocytes and neighboring stromal cells to induce inflammatory and fibrogenic wound healing responses that drive progressive fibrosis. In conclusion, Hedgehog signaling must be precisely controlled in adult liver cells to maintain liver health.


Asunto(s)
Proteínas Hedgehog , Hepatopatías , Adulto , Humanos , Proteínas Hedgehog/metabolismo , Hepatopatías/metabolismo , Hígado/patología , Transducción de Señal/fisiología , Cirrosis Hepática/metabolismo
3.
Cell Res ; 33(7): 516-532, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37169907

RESUMEN

Cellular senescence is a stress-induced, stable cell cycle arrest phenotype which generates a pro-inflammatory microenvironment, leading to chronic inflammation and age-associated diseases. Determining the fundamental molecular pathways driving senescence instead of apoptosis could enable the identification of senolytic agents to restore tissue homeostasis. Here, we identify thrombomodulin (THBD) signaling as a key molecular determinant of the senescent cell fate. Although normally restricted to endothelial cells, THBD is rapidly upregulated and maintained throughout all phases of the senescence program in aged mammalian tissues and in senescent cell models. Mechanistically, THBD activates a proteolytic feed-forward signaling pathway by stabilizing a multi-protein complex in early endosomes, thus forming a molecular basis for the irreversibility of the senescence program and ensuring senescent cell viability. Therapeutically, THBD signaling depletion or inhibition using vorapaxar, an FDA-approved drug, effectively ablates senescent cells and restores tissue homeostasis in liver fibrosis models. Collectively, these results uncover proteolytic THBD signaling as a conserved pro-survival pathway essential for senescent cell viability, thus providing a pharmacologically exploitable senolytic target for senescence-associated diseases.


Asunto(s)
Células Endoteliales , Trombomodulina , Animales , Senescencia Celular , Cirrosis Hepática/tratamiento farmacológico , Transducción de Señal , Apoptosis , Mamíferos
4.
Hepatology ; 78(4): 1209-1222, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37036206

RESUMEN

BACKGROUND AND AIMS: Senescent hepatocytes accumulate in parallel with fibrosis progression during NASH. The mechanisms that enable progressive expansion of nonreplicating cell populations and the significance of that process in determining NASH outcomes are unclear. Senescing cells upregulate thrombomodulin-protease-activated receptor-1 (THBD-PAR1) signaling to remain viable. Vorapaxar blocks the activity of that pathway. We used vorapaxar to determine if and how THBD-PAR1 signaling promotes fibrosis progression in NASH. APPROACH AND RESULTS: We evaluated the THBD-PAR1 pathway in liver biopsies from patients with NAFLD. Chow-fed mice were treated with viral vectors to overexpress p16 in hepatocytes and induce replicative senescence. Effects on the THBD-PAR1 axis and regenerative capacity were assessed; the transcriptome of p16-overexpressing hepatocytes was characterized, and we examined how conditioned medium from senescent but viable (dubbed "undead") hepatocytes reprograms HSCs. Mouse models of NASH caused by genetic obesity or Western diet/CCl 4 were treated with vorapaxar to determine effects on hepatocyte senescence and liver damage. Inducing senescence upregulates the THBD-PAR1 signaling axis in hepatocytes and induces their expression of fibrogenic factors, including hedgehog ligands. Hepatocyte THBD-PAR1 signaling increases in NAFLD and supports sustained hepatocyte senescence that limits effective liver regeneration and promotes maladaptive repair. Inhibiting PAR1 signaling with vorapaxar interrupts this process, reduces the burden of 'undead' senescent cells, and safely improves NASH and fibrosis despite ongoing lipotoxic stress. CONCLUSION: The THBD-PAR1 signaling axis is a novel therapeutic target for NASH because blocking this pathway prevents accumulation of senescing but viable hepatocytes that generate factors that promote maladaptive liver repair.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Receptor PAR-1/metabolismo , Trombomodulina/metabolismo , Hepatocitos/metabolismo , Hígado/patología , Fibrosis , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
5.
Hepatology ; 77(6): 1998-2015, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36815382

RESUMEN

BACKGROUND AND AIMS: Liver fibrosis results from the accumulation of myofibroblasts (MFs) derived from quiescent HSCs, and yes-associated protein (YAP) controls this state transition. Although fibrosis is also influenced by HSC death and senescence, whether YAP regulates these processes and whether this could be leveraged to treat liver fibrosis are unknown. APPROACH AND RESULTS: YAP activity was manipulated in MF-HSCs to determine how YAP impacts susceptibility to pro-apoptotic senolytic agents or ferroptosis. Effects of senescence on YAP activity and susceptibility to apoptosis versus ferroptosis were also examined. CCl 4 -treated mice were treated with a ferroptosis inducer or pro-apoptotic senolytic to determine the effects on liver fibrosis. YAP was conditionally disrupted in MFs to determine how YAP activity in MF-HSC affects liver fibrosis in mouse models. Silencing YAP in cultured MF-HSCs induced HSC senescence and vulnerability to senolytics, and promoted ferroptosis resistance. Conversely, inducing HSC senescence suppressed YAP activity, increased sensitivity to senolytics, and decreased sensitivity to ferroptosis. Single-cell analysis of HSCs from fibrotic livers revealed heterogeneous sensitivity to ferroptosis, apoptosis, and senescence. In mice with chronic liver injury, neither the ferroptosis inducer nor senolytic improved fibrosis. However, selectively depleting YAP in MF-HSCs induced senescence and decreased liver injury and fibrosis. CONCLUSION: YAP determines whether MF-HSCs remain activated or become senescent. By regulating this state transition, Yap controls both HSC fibrogenic activity and susceptibility to distinct mechanisms for cell death. MF-HSC-specific YAP depletion induces senescence and protects injured livers from fibrosis. Clarifying determinants of HSC YAP activity may facilitate the development of novel anti-fibrotic therapies.


Asunto(s)
Cirrosis Hepática , Senoterapéuticos , Ratones , Animales , Cirrosis Hepática/patología , Hígado/patología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Muerte Celular , Células Estrelladas Hepáticas/metabolismo
6.
Cell Mol Gastroenterol Hepatol ; 15(4): 949-970, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36535507

RESUMEN

BACKGROUND & AIMS: Nonalcoholic steatohepatitis (NASH), a leading cause of cirrhosis, strongly associates with the metabolic syndrome, an insulin-resistant proinflammatory state that disrupts energy balance and promotes progressive liver degeneration. We aimed to define the role of Smoothened (Smo), an obligatory component of the Hedgehog signaling pathway, in controlling hepatocyte metabolic homeostasis and, thereby, susceptibility to NASH. METHODS: We conditionally deleted Smo in hepatocytes of healthy chow-fed mice and performed metabolic phenotyping, coupled with single-cell RNA sequencing (RNA-seq), to characterize the role of hepatocyte Smo in regulating basal hepatic and systemic metabolic homeostasis. Liver RNA-seq datasets from 2 large human cohorts were also analyzed to define the relationship between Smo and NASH susceptibility in people. RESULTS: Hepatocyte Smo deletion inhibited the Hedgehog pathway and promoted fatty liver, hyperinsulinemia, and insulin resistance. We identified a plausible mechanism whereby inactivation of Smo stimulated the mTORC1-SREBP1c signaling axis, which promoted lipogenesis while inhibiting the hepatic insulin cascade. Transcriptomics of bulk and single Smo-deficient hepatocytes supported suppression of insulin signaling and also revealed molecular abnormalities associated with oxidative stress and mitochondrial dysfunction. Analysis of human bulk RNA-seq data revealed that Smo expression was (1) highest in healthy livers, (2) lower in livers with NASH than in those with simple steatosis, (3) negatively correlated with markers of insulin resistance and liver injury, and (4) declined progressively as fibrosis severity worsened. CONCLUSIONS: The Hedgehog pathway controls insulin sensitivity and energy homeostasis in adult livers. Loss of hepatocyte Hedgehog activity induces hepatic and systemic metabolic stress and enhances susceptibility to NASH by promoting hepatic lipoxicity and insulin resistance.


Asunto(s)
Resistencia a la Insulina , Enfermedad del Hígado Graso no Alcohólico , Adulto , Humanos , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Resistencia a la Insulina/genética , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Hepatocitos/metabolismo , Insulina/metabolismo
7.
Aging Cell ; 21(2): e13530, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34984806

RESUMEN

Older age is a major risk factor for damage to many tissues, including liver. Aging undermines resiliency and impairs liver regeneration. The mechanisms whereby aging reduces resiliency are poorly understood. Hedgehog is a signaling pathway with critical mitogenic and morphogenic functions during development. Recent studies indicate that Hedgehog regulates metabolic homeostasis in adult liver. The present study evaluates the hypothesis that Hedgehog signaling becomes dysregulated in hepatocytes during aging, resulting in decreased resiliency and therefore, impaired regeneration and enhanced vulnerability to damage. Partial hepatectomy (PH) was performed on young and old wild-type mice and Smoothened (Smo)-floxed mice treated with viral vectors to conditionally delete Smo and disrupt Hedgehog signaling specifically in hepatocytes. Changes in signaling were correlated with changes in regenerative responses and compared among groups. Old livers had fewer hepatocytes proliferating after PH. RNA sequencing identified Hedgehog as a top downregulated pathway in old hepatocytes before and after the regenerative challenge. Deleting Smo in young hepatocytes before PH prevented Hedgehog pathway activation after PH and inhibited regeneration. Gene Ontogeny analysis demonstrated that both old and Smo-deleted young hepatocytes had activation of pathways involved in innate immune responses and suppression of several signaling pathways that control liver growth and metabolism. Hedgehog inhibition promoted telomere shortening and mitochondrial dysfunction in hepatocytes, consequences of aging that promote inflammation and impair tissue growth and metabolic homeostasis. Hedgehog signaling is dysregulated in old hepatocytes. This accelerates aging, resulting in decreased resiliency and therefore, impaired liver regeneration and enhanced vulnerability to damage.


Asunto(s)
Proteínas Hedgehog , Transducción de Señal , Envejecimiento , Animales , Proliferación Celular , Proteínas Hedgehog/metabolismo , Hepatocitos/metabolismo , Hígado/metabolismo , Regeneración Hepática/fisiología , Ratones
8.
Liver Int ; 41(9): 2214-2227, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33991158

RESUMEN

BACKGROUND & AIMS: The outcome of liver injury is dictated by factors that control the accumulation of myofibroblastic (activated) hepatic stellate cells (MF-HSCs) but therapies that specifically block this process have not been discovered. We evaluated the hypothesis that MF-HSCs and liver fibrosis could be safely reduced by inhibiting the cysteine/glutamate antiporter xCT. METHODS: xCT activity was disrupted in both HSC lines and primary mouse HSCs to determine its effect on HSC biology. For comparison, xCT expression and function were also determined in primary mouse hepatocytes. Finally, the roles of xCT were assessed in mouse models of liver fibrosis. RESULTS: We found that xCT mRNA levels were almost a log-fold higher in primary mouse HSCs than in primary mouse hepatocytes. Further, primary mouse HSCs dramatically induced xCT as they became MF, and inhibiting xCT blocked GSH synthesis, reduced growth and fibrogenic gene expression and triggered HSC ferroptosis. Doses of xCT inhibitors that induced massive ferroptosis in HSCs had no effect on hepatocyte viability in vitro, and xCT inhibitors reduced liver fibrosis without worsening liver injury in mice with acute liver injury. However, TGFß treatment up-regulated xCT and triggered ferroptosis in cultured primary mouse hepatocytes. During chronic liver injury, xCT inhibitors exacerbated injury, impaired regeneration and failed to improve fibrosis, confirming that HSCs and hepatocytes deploy similar mechanisms to survive chronic oxidative stress. CONCLUSIONS: Inhibiting xCT can suppress myofibroblastic activity and induce ferroptosis of MF-HSCs. However, targeting xCT inhibition to MF-HSCs will be necessary to exploit ferroptosis as an anti-fibrotic strategy.


Asunto(s)
Ferroptosis , Células Estrelladas Hepáticas , Animales , Células Estrelladas Hepáticas/patología , Hepatocitos , Hígado/patología , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/patología , Ratones
9.
Toxicol Lett ; 338: 21-31, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33290831

RESUMEN

Acetaminophen (APAP) overdose is the most common cause of acute liver failure in the United States and formation of APAP-protein adducts, mitochondrial oxidant stress and activation of the mitogen activated protein (MAP) kinase c-jun N-terminal kinase (JNK) are critical for APAP-induced cell death. However, direct evidence linking these mechanistic features are lacking and were investigated by examining the early temporal course of these changes in mice after 300 mg/kg APAP. Protein adducts were detectable in the liver (0.05-0.1 nmol/mg protein) by 15 and 30 min after APAP, which increased (>500 %) selectively in mitochondria by 60 min. Cytosolic JNK activation was only evident at 60 min, and was significantly attenuated by scavenging superoxide specifically in the cytosol by TEMPO treatment. Treatment of mouse hepatocytes with APAP revealed mitochondrial superoxide generation within 15 min, accompanied by hydrogen peroxide production without change in mitochondrial respiratory function. The oxidant stress preceded JNK activation and its mitochondrial translocation. Inhibitor studies identified the putative source of mitochondrial superoxide as complex III, which released superoxide towards the intermembrane space after APAP resulting in activation of JNK in the cytosol. Our studies provide direct evidence of mechanisms involved in mitochondrial superoxide generation after NAPQI-adduct formation and its activation of the MAP kinase cascade in the cytosol, which are critical features of APAP hepatotoxicity.


Asunto(s)
Acetaminofén , Enfermedad Hepática Inducida por Sustancias y Drogas/enzimología , Citosol/enzimología , Sobredosis de Droga , Hepatocitos/enzimología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Mitocondrias Hepáticas/enzimología , Proteínas Mitocondriales/metabolismo , Superóxidos/metabolismo , Animales , Benzoquinonas/metabolismo , Células Cultivadas , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Modelos Animales de Enfermedad , Activación Enzimática , Hepatocitos/patología , Iminas/metabolismo , Masculino , Ratones Endogámicos C57BL , Mitocondrias Hepáticas/patología , Estrés Oxidativo , Transporte de Proteínas , Factores de Tiempo
10.
J Clin Invest ; 130(4): 2129-2145, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31945016

RESUMEN

Severe alcoholic hepatitis (SAH) is a deadly liver disease without an effective medical therapy. Although SAH mortality is known to correlate with hepatic accumulation of immature liver cells, why this occurs and how it causes death are unclear. Here, we demonstrate that expression of epithelial splicing regulatory protein 2 (ESRP2), an RNA-splicing factor that maintains the nonproliferative, mature phenotype of adult hepatocytes, was suppressed in both human SAH and various mouse models of SAH in parallel with the severity of alcohol consumption and liver damage. Inflammatory cytokines released by excessive alcohol ingestion reprogrammed adult hepatocytes into proliferative, fetal-like cells by suppressing ESRP2. Sustained loss of ESRP2 permitted reemergence of a fetal RNA-splicing program that attenuates the Hippo signaling pathway and thus allows fetal transcriptional regulators to accumulate in adult liver. We further showed that depleting ESRP2 in mice exacerbated alcohol-induced steatohepatitis, enabling surviving hepatocytes to shed adult hepatocyte functions and become more regenerative, but threatening overall survival by populating the liver with functionally immature hepatocytes. Our findings revealed a mechanism that explains why liver failure develops in patients with the clinical syndrome of SAH, suggesting that recovery from SAH might be improved by limiting adult-to-fetal reprogramming in hepatocytes.


Asunto(s)
Empalme Alternativo , Reprogramación Celular , Hepatitis Alcohólica/metabolismo , Hepatocitos/metabolismo , Proteínas de Unión al ARN/metabolismo , Transducción de Señal , Animales , Línea Celular , Supervivencia Celular , Modelos Animales de Enfermedad , Femenino , Hepatitis Alcohólica/genética , Hepatitis Alcohólica/patología , Hepatocitos/patología , Humanos , Masculino , Ratones , Ratones Noqueados , Proteínas de Unión al ARN/genética , Índice de Severidad de la Enfermedad
11.
Liver Int ; 40(4): 830-843, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31903720

RESUMEN

BACKGROUND AND AIMS: Treatment of non-alcoholic steatohepatitis (NASH) is challenging, because suppressing fibrotic progression has not been achieved consistently by drug candidates currently in clinical trials. The aim of this study was to investigate the molecular interplays underlying NASH-associated fibrosis in a mouse NASH model and human specimens. METHODS: Mice were divided into 4 groups: Controls; NASH (high fat/Calorie diet plus high fructose and glucose in drinking water, HFCD-HF/G) for 16 weeks; HFCD-HF/G plus docosahexaenoic acid (DHA) for 16 or 8 weeks. RESULTS: Along with NASH progression, fibrotic deposition was documented in HFCD-HF/G-fed mice. Liver succinate content was significantly increased along with decreased expression of succinate dehydrogenase-A (SDH-A) in these mice; whereas, GPR-91 receptor expression was much enhanced in histology compared to control mice, and co-localized histologically with hepatic stellate cells (HSCs). Succinate content was increased in fatty acid-overloaded primary hepatocytes with significant oxidant stress and lipotoxicity. Exposure to succinate led to up-regulation of GPR-91 receptor in primary and immortalized HSCs. In contrast, suppression of GPR-91 receptor expression abolished succinate stimulatory role in GPR-91 expression and extracellular matrix production in HSCs. All these changes were minimized or abrogated by DHA supplementation in vivo or in vitro. Moreover, GPR-91 receptor expression correlates with severity of fibrosis in human NASH biopsy specimens. CONCLUSION: Succinate accumulation in steatotoic hepatocytes may result in HSC activation through GPR-91 receptor signalling in NASH progression, and the cross-talk between hepatocytes and HSC through GPR-91 signalling is most likely to be the molecular basis of fibrogenesis in NASH.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Suplementos Dietéticos , Ácidos Docosahexaenoicos/farmacología , Fibrosis , Hígado/patología , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/patología , Ácido Succínico
12.
Am J Pathol ; 190(1): 93-107, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31669305

RESUMEN

Fibrolamellar carcinoma (FLC) is characterized by in-frame fusion of DnaJ heat shock protein family (Hsp40) member B1 (DNAJB1) with protein kinase cAMP-activated catalytic subunit α (PRKACA) and by dense desmoplasia. Surgery is the only effective treatment because mechanisms supporting tumor survival are unknown. We used single-cell RNA sequencing to characterize a patient-derived FLC xenograft model and identify therapeutic targets. Human FLC cells segregated into four discrete clusters that all expressed the oncogene Yes-associated protein 1 (YAP1). The two communities most enriched with cells coexpressing FLC markers [CD68, A-kinase anchoring protein 12 (AKAP12), cytokeratin 7, epithelial cell adhesion molecule (EPCAM), and carbamoyl palmitate synthase-1] also had the most cells expressing YAP1 and its proproliferative target genes (AREG and CCND1), suggesting these were proliferative FLC cell clusters. The other two clusters were enriched with cells expressing profibrotic YAP1 target genes, ACTA2, ELN, and COL1A1, indicating these were fibrogenic FLC cells. All clusters expressed the YAP1 target gene and mesothelial progenitor marker mesothelin, and many mesothelin-positive cells coexpressed albumin. Trajectory analysis predicted that the four FLC communities were derived from a single cell type transitioning among phenotypic states. After establishing a novel FLC cell line that harbored the DNAJB1-PRKACA fusion, YAP1 was inhibited, which significantly reduced expression of known YAP1 target genes as well as cell growth and migration. Thus, both FLC epithelial and stromal cells appear to arise from DNAJB1-PRKACA fusion in a YAP1-dependent liver mesothelial progenitor, identifying YAP1 as a target for FLC therapy.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Carcinoma Hepatocelular/patología , Epitelio/patología , Neoplasias Hepáticas/patología , Hígado/patología , Análisis de la Célula Individual/métodos , Células Madre/patología , Factores de Transcripción/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Biomarcadores de Tumor , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Epitelio/metabolismo , Regulación Neoplásica de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Hígado/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Mesotelina , Ratones , Ratones SCID , Células Madre/metabolismo , Factores de Transcripción/genética , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto , Proteínas Señalizadoras YAP
13.
Artículo en Inglés | MEDLINE | ID: mdl-31881361

RESUMEN

BACKGROUND & AIMS: Nonalcoholic steatohepatitis (NASH) occurs in the context of aberrant metabolism. Glutaminolysis is required for metabolic reprograming of hepatic stellate cells (HSCs) and liver fibrogenesis in mice. However, it is unclear how changes in HSC glutamine metabolism contribute to net changes in hepatic glutaminolytic activity during fibrosis progression, or whether this could be used to track fibrogenic activity in NASH. We postulated that increased HSC glutaminolysis marks active scarring in NASH. METHODS: Glutaminolysis was assessed in mouse NASH fibrosis models and in NASH patients. Serum and liver levels of glutamine and glutamate and hepatic expression of glutamine transporter/metabolic enzymes were correlated with each other and with fibrosis severity. Glutaminolysis was disrupted in HSCs to examine if this directly influenced fibrogenesis. 18F-fluoroglutamine positron emission tomography was used to determine how liver glutamine assimilation tracked with hepatic fibrogenic activity in situ. RESULTS: The serum glutamate/glutamine ratio increased and correlated with its hepatic ratio, myofibroblast content, and fibrosis severity. Healthy livers almost exclusively expressed liver-type glutaminase (Gls2); Gls2 protein localized in zone 1 hepatocytes, whereas glutamine synthase was restricted to zone 3 hepatocytes. In fibrotic livers, Gls2 levels reduced and glutamine synthase zonality was lost, but both Slc1a5 (glutamine transporter) and kidney-type Gls1 were up-regulated; Gls1 protein was restricted to stromal cells and accumulated in fibrotic septa. Hepatocytes did not compensate for decreased Gls2 by inducing Gls1. Limiting glutamine or directly inhibiting GLS1 inhibited growth and fibrogenic activity in cultured human HSCs. Compared with healthy livers, fibrotic livers were 18F-fluoroglutamine-avid by positron emission tomography, suggesting that glutamine-addicted myofibroblasts drive increased hepatic utilization of glutamine as fibrosis progresses. CONCLUSIONS: Glutaminolysis is a potential diagnostic marker and therapeutic target during NASH fibrosis progression.


Asunto(s)
Cicatriz/diagnóstico , Cirrosis Hepática/diagnóstico , Hígado/patología , Enfermedad del Hígado Graso no Alcohólico/patología , Adulto , Sistema de Transporte de Aminoácidos ASC/análisis , Sistema de Transporte de Aminoácidos ASC/metabolismo , Animales , Biomarcadores/análisis , Biomarcadores/metabolismo , Línea Celular , Cicatriz/patología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Glutaminasa/análisis , Glutaminasa/metabolismo , Glutamina/análisis , Glutamina/metabolismo , Células Estrelladas Hepáticas/patología , Humanos , Hígado/citología , Hígado/diagnóstico por imagen , Cirrosis Hepática/patología , Masculino , Metabolómica , Ratones , Persona de Mediana Edad , Antígenos de Histocompatibilidad Menor/análisis , Antígenos de Histocompatibilidad Menor/metabolismo , Miofibroblastos/patología , Tomografía de Emisión de Positrones
14.
Arch Toxicol ; 93(1): 163-178, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30324313

RESUMEN

We previously reported that delayed treatment with Mito-tempo (MT), a mitochondria-targeted superoxide dismutase mimetic, protects against the early phase of acetaminophen (APAP) hepatotoxicity by inhibiting peroxynitrite formation. However, whether this protection is sustained to the late phase of toxicity is unknown. To investigate the late protection, C57Bl/6J mice were treated with 300 mg/kg APAP followed by 20 mg/kg MT 1.5 h or 3 h later. We found that both MT treatments protected against the late phase of APAP hepatotoxicity at 12 and 24 h. Surprisingly, MT-treated mice demonstrated a significant increase in apoptotic hepatocytes, while the necrotic phenotype was observed almost exclusively in mice treated with APAP alone. In addition, there was a significant increase in caspase-3 activity and cleavage in the livers of MT-treated mice. Immunostaining for active caspase-3 revealed that the positively stained hepatocytes were exclusively in centrilobular areas. Treatment with the pan-caspase inhibitor ZVD-fmk (10 mg/kg) 2 h post-APAP neutralized this caspase activation and provided additional protection against APAP hepatotoxicity. Treatment with N-acetylcysteine, the current standard of care for APAP poisoning, protected but did not induce this apoptotic phenotype. Mechanistically, MT treatment inhibited APAP-induced RIP3 kinase expression, and RIP3-deficient mice showed caspase activation and apoptotic morphology in hepatocytes analogous to MT treatment. These data suggest that while necrosis is the primary cause of cell death after APAP hepatotoxicity, treatment with the antioxidant MT may switch the mode of cell death to secondary apoptosis in some cells. Modulation of mitochondrial oxidative stress and RIP3 kinase expression play critical roles in this switch.


Asunto(s)
Acetaminofén/envenenamiento , Apoptosis/efectos de los fármacos , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Compuestos Organofosforados/farmacología , Piperidinas/farmacología , Acetilcisteína , Animales , Antioxidantes/farmacología , Caspasa 3/metabolismo , Hepatocitos/citología , Hepatocitos/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Necrosis , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo
15.
Gastroenterology ; 154(5): 1465-1479.e13, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29305935

RESUMEN

BACKGROUND & AIMS: Cirrhosis results from accumulation of myofibroblasts derived from quiescent hepatic stellate cells (Q-HSCs); it regresses when myofibroblastic HSCs are depleted. Hedgehog signaling promotes transdifferentiation of HSCs by activating Yes-associated protein 1 (YAP1 or YAP) and inducing aerobic glycolysis. However, increased aerobic glycolysis alone cannot meet the high metabolic demands of myofibroblastic HSCs. Determining the metabolic processes of these cells could lead to strategies to prevent progressive liver fibrosis, so we investigated whether glutaminolysis (conversion of glutamine to alpha-ketoglutarate) sustains energy metabolism and permits anabolism when Q-HSCs become myofibroblastic, and whether this is controlled by hedgehog signaling to YAP. METHODS: Primary HSCs were isolated from C57BL/6 or Smoflox/flox mice; we also performed studies with rat and human myofibroblastic HSCs. We measured changes of glutaminolytic genes during culture-induced primary HSC transdifferentiation. Glutaminolysis was disrupted in cells by glutamine deprivation or pathway inhibitors (bis-2-[5-phenylacetamido-1,2,4-thiadiazol-2-yl] ethyl sulfide, CB-839, epigallocatechin gallate, and aminooxyacetic acid), and effects on mitochondrial respiration, cell growth and migration, and fibrogenesis were measured. Hedgehog signaling to YAP was disrupted in cells by adenovirus expression of Cre-recombinase or by small hairpin RNA knockdown of YAP. Hedgehog and YAP activity were inhibited by incubation of cells with cyclopamine or verteporfin, and effects on glutaminolysis were measured. Acute and chronic liver fibrosis were induced in mice by intraperitoneal injection of CCl4 or methionine choline-deficient diet. Some mice were then given injections of bis-2-[5-phenylacetamido-1,2,4-thiadiazol-2-yl] ethyl sulfide to inhibit glutaminolysis, and myofibroblast accumulation was measured. We also performed messenger RNA and immunohistochemical analyses of percutaneous liver biopsies from healthy human and 4 patients with no fibrosis, 6 patients with mild fibrosis, and 3 patients with severe fibrosis. RESULTS: Expression of genes that regulate glutaminolysis increased during transdifferentiation of primary Q-HSCs into myofibroblastic HSCs, and inhibition of glutaminolysis disrupted transdifferentiation. Blocking glutaminolysis in myofibroblastic HSCs suppressed mitochondrial respiration, cell growth and migration, and fibrogenesis; replenishing glutaminolysis metabolites to these cells restored these activities. Knockout of the hedgehog signaling intermediate smoothened or knockdown of YAP inhibited expression of glutaminase, the rate-limiting enzyme in glutaminolysis. Hedgehog and YAP inhibitors blocked glutaminolysis and suppressed myofibroblastic activities in HSCs. In livers of patients and of mice with acute or chronic fibrosis, glutaminolysis was induced in myofibroblastic HSCs. In mice with liver fibrosis, inhibition of glutaminase blocked accumulation of myofibroblasts and fibrosis progression. CONCLUSIONS: Glutaminolysis controls accumulation of myofibroblast HSCs in mice and might be a therapeutic target for cirrhosis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Metabolismo Energético , Glutamina/metabolismo , Proteínas Hedgehog/metabolismo , Células Estrelladas Hepáticas/metabolismo , Cirrosis Hepática/metabolismo , Hígado/metabolismo , Miofibroblastos/metabolismo , Fosfoproteínas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Estudios de Casos y Controles , Proteínas de Ciclo Celular , Proliferación Celular , Transdiferenciación Celular , Células Cultivadas , Reprogramación Celular , Regulación de la Expresión Génica , Glutaminasa/metabolismo , Proteínas Hedgehog/genética , Células Estrelladas Hepáticas/patología , Humanos , Ácidos Cetoglutáricos/metabolismo , Hígado/patología , Cirrosis Hepática/genética , Cirrosis Hepática/patología , Cirrosis Hepática Experimental/genética , Cirrosis Hepática Experimental/metabolismo , Cirrosis Hepática Experimental/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias Hepáticas/metabolismo , Mitocondrias Hepáticas/patología , Miofibroblastos/patología , Fenotipo , Fosfoproteínas/genética , Interferencia de ARN , Ratas , Transducción de Señal , Receptor Smoothened/genética , Receptor Smoothened/metabolismo , Factores de Tiempo , Factores de Transcripción , Transfección , Proteínas Señalizadoras YAP
16.
Food Chem Toxicol ; 108(Pt A): 339-350, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28827156

RESUMEN

Mitochondrial biogenesis (MB) is an adaptive response to maintain metabolic homeostasis after mitochondrial dysfunction. Induction of MB during APAP hepatotoxicity has not been studied. To investigate this, mice were treated with toxic doses of APAP and euthanized between 0 and 96 h. At early time points, APAP caused both mitochondrial dysfunction and reduction of mitochondrial mass, indicated by reduced activity of electron transport chain (ETC) complexes I and IV and depletion of mitochondrial DNA (mtDNA), respectively. Both ETC activity and mtDNA gradually recovered after 12 h, suggesting that MB occurs at late time points after APAP overdose. Immunofluorescent staining of mitochondria with mitochondrial outer membrane protein Tom20 further demonstrated that MB occurs selectively in hepatocytes surrounding necrotic areas. MB signaling mediators including PPARγ co-activator 1-α (Pgc-1α), nuclear respiratory factor-1 (Nrf-1) and mitochondrial fission protein dynamin-related protein-1 (Drp-1) were induced. Pgc-1α was selectively increased in hepatocytes surrounding necrotic areas. In addition, the time course of MB induction coincides with increased liver regeneration. Post-treatment with the known MB inducer SRT1720 increased Pgc-1α expression and liver regeneration, resulting in protection against late liver injury after APAP overdose. Thus, induction of MB is an important feature during APAP hepatotoxicity and liver regeneration.


Asunto(s)
Acetaminofén/toxicidad , Analgésicos no Narcóticos/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Mitocondrias/efectos de los fármacos , Animales , ADN Mitocondrial , Relación Dosis-Respuesta a Droga , Proteínas del Complejo de Cadena de Transporte de Electrón/fisiología , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/fisiología
18.
Toxicol Sci ; 155(2): 363-378, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28123000

RESUMEN

Epidermal growth factor receptor (EGFR) plays a crucial role in hepatocyte proliferation. Its role in acetaminophen (APAP)-mediated hepatotoxicity and subsequent liver regeneration is completely unknown. Role of EGFR after APAP-overdose in mice was studied using pharmacological inhibition strategy. Rapid, sustained and dose-dependent activation of EGFR was noted after APAP-treatment in mice, which was triggered by glutathione depletion. EGFR-activation was also observed in primary human hepatocytes after APAP-treatment, preceding elevation of toxicity markers. Treatment of mice with an EGFR-inhibitor (EGFRi), Canertinib, 1h post-APAP resulted in robust inhibition of EGFR-activation and a striking reduction in APAP-induced liver injury. Metabolic activation of APAP, formation of APAP-protein adducts, APAP-mediated JNK-activation and its mitochondrial translocation were not altered by EGFRi. Interestingly, EGFR rapidly translocated to mitochondria after APAP-treatment. EGFRi-treatment abolished mitochondrial EGFR activity, prevented APAP-mediated mitochondrial dysfunction/oxidative-stress and release of endonucleases from mitochondria, which are responsible for DNA-damage/necrosis. Treatment with N-acetylcysteine (NAC), 4h post-APAP in mice did not show any protection but treatment of EGFRi in combination with NAC showed decrease in liver injury. Finally, delayed treatment with EGFRi, 12-h post-APAP, did not alter peak injury but caused impairment of liver regeneration resulting in sustained injury and decreased survival after APAP overdose in mice. Impairment of regeneration was due to inhibition of cyclinD1 induction and cell cycle arrest. Our study has revealed a new dual role of EGFR both in initiation of APAP-injury and in stimulation of subsequent compensatory regeneration after APAP-overdose.


Asunto(s)
Acetaminofén/toxicidad , Analgésicos no Narcóticos/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/enzimología , Sobredosis de Droga/enzimología , Receptores ErbB/fisiología , Hepatocitos/efectos de los fármacos , Regeneración Hepática , Acetaminofén/metabolismo , Analgésicos no Narcóticos/metabolismo , Animales , Receptores ErbB/antagonistas & inhibidores , Glutatión/metabolismo , Hepatocitos/enzimología , Fallo Hepático Agudo/inducido químicamente , Fallo Hepático Agudo/enzimología , Ratones , Mitocondrias Hepáticas/efectos de los fármacos , Mitocondrias Hepáticas/enzimología , Estrés Oxidativo , Unión Proteica
19.
Arch Toxicol ; 91(2): 761-773, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27002509

RESUMEN

Acetaminophen (APAP) hepatotoxicity is characterized by an extensive mitochondrial oxidant stress. However, its importance as a drug target has not been clarified. To investigate this, fasted C57BL/6J mice were treated with 300 mg/kg APAP and the mitochondria-targeted antioxidant Mito-Tempo (MT) was given 1.5 h later. APAP caused severe liver injury in mice, as indicated by the increase in plasma ALT activities and centrilobular necrosis. MT dose-dependently reduced the injury. Importantly, MT did not affect APAP-protein adducts formation, glutathione depletion or c-jun N-terminal kinase activation and its mitochondrial translocation. In contrast, hepatic glutathione disulfide and peroxynitrite formation were dose-dependently reduced by MT, indicating its effective mitochondrial oxidant stress scavenging capacity. Consequently, mitochondrial translocation of Bax and release of mitochondrial intermembrane proteins such as apoptosis-inducing factor were prevented, and nuclear DNA fragmentation was eliminated. To demonstrate the importance of mitochondria-specific antioxidant property of MT, we compared its efficacy with Tempo, which has the same pharmacological mode of action as MT but lacks the mitochondria targeting moiety. In contrast to the dramatic protection by MT, the same molar dose of Tempo did not significantly reduce APAP hepatotoxicity. In contrast, even a 3 h post-treatment with MT reduced 70 % of the injury, and the combination of MT with N-acetylcysteine (NAC) provided superior protection than NAC alone. We conclude that MT protects against APAP overdose in mice by attenuating the mitochondrial oxidant stress and preventing peroxynitrite formation and the subsequent mitochondrial dysfunction. MT is a promising therapeutic agent for APAP overdose patients.


Asunto(s)
Acetaminofén/toxicidad , Mitocondrias Hepáticas/efectos de los fármacos , Compuestos Organofosforados/farmacología , Piperidinas/farmacología , Sustancias Protectoras/farmacología , Activación Metabólica/efectos de los fármacos , Animales , Antioxidantes/farmacología , Enfermedad Hepática Inducida por Sustancias y Drogas/fisiopatología , Óxidos N-Cíclicos/farmacología , MAP Quinasa Quinasa 4/metabolismo , Masculino , Ratones Endogámicos C57BL , Mitocondrias Hepáticas/metabolismo , Estrés Oxidativo/efectos de los fármacos
20.
Food Chem Toxicol ; 98(Pt B): 107-118, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27773698

RESUMEN

Mouse models of acetaminophen (APAP) hepatotoxicity are considered relevant for the human pathophysiology. The C57BL/6 strain is most popular because it is the background strain of gene knock-out mice. However, conflicting results in the literature may have been caused by sub-strain mismatches, e.g. C57BL/6J and C57BL/6N. This study was initiated to determine the mechanism behind the sub-strain susceptibility to APAP toxicity. C57BL/6N and C57BL/6J mice were dosed with 200 mg/kg APAP and sacrificed at different time points. C57BL/6N mice developed significantly more liver injury as measured by plasma ALT activities and histology. Although there was no difference in glutathione depletion or cytochrome P450 activity between groups, C57BL/6N had a higher glutathione disulfide-to-glutathione ratio and more APAP protein adducts. C57BL/6N showed more mitochondrial translocation of phospho-JNK and BAX, and more release of mitochondrial intermembrane proteins apoptosis-inducing factor (AIF), second mitochondria-derived activator of caspases (SMAC), which caused more DNA fragmentation. The increased mitochondrial dysfunction was confirmed in vitro as C57BL/6N hepatocytes had a more precipitous drop in JC-1 fluorescence after APAP exposure. CONCLUSION: C57BL/6N mice are more susceptible to APAP-induced hepatotoxicity, likely due to increased formation of APAP-protein adducts and a subsequent enhancement of mitochondrial dysfunction associated with aggravated nuclear DNA fragmentation.


Asunto(s)
Acetaminofén/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Mitocondrias Hepáticas/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Animales , Western Blotting , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Susceptibilidad a Enfermedades , Glutatión/metabolismo , Humanos , Técnicas para Inmunoenzimas , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias Hepáticas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...